Loading jsMath...
\require{AMSmath}

Uitwerkingen oefeningen

I.

\eqalign{ & \int {5x^2 e^{x^3 } dx} = \cr & \int {\frac{5} {3}3x^2 e^{x^3 } dx} = \cr & \int {\frac{5} {3}d\left( {e^{x^3 } } \right)} = \cr & \int {\frac{5} {3} \cdot du} = \cr & \frac{5} {3} \cdot u + C \cr & \frac{5} {3}e^{x^3 } + C \cr}

II.

\eqalign{   & \int {x^2 (x^3  - 1)^3 dx}  =   \cr   & \int {\frac{1} {3}(x^3  - 1)^3  \cdot 3x^2 } dx =   \cr   & \int {\frac{1} {3}(x^3  - 1)^3  \cdot d(x^3  - 1)}  =   \cr   & \int {\frac{1} {3}} \,u^3 du =   \cr   & \frac{1} {3} \cdot \frac{1} {4}u^4  + C  \cr   & \frac{1} {{12}}u^4  + C  \cr   & \frac{1} {{12}}\left( {x^3  - 1} \right)^4  + C \cr}

III.

\eqalign{   & \int {\left( {x^3  + x} \right)\sqrt {x^2  + 1} \,\,dx = }   \cr   & \int {x\left( {x^2  + 1} \right)\sqrt {x^2  + 1} \,\,dx = }   \cr   & \int {x\left( {x^2  + 1} \right)^{1\frac{1} {2}} \,\,dx = }   \cr   & \int {\frac{1} {2}\left( {x^2  + 1} \right)^{1\frac{1} {2}}  \cdot 2x\,\,dx = }   \cr   & \int {\frac{1} {2}\left( {x^2  + 1} \right)^{1\frac{1} {2}}  \cdot d\left( {x^2  + 1} \right) = }   \cr   & \int {\frac{1} {2}} \,u^{1\frac{1} {2}} du =   \cr   & \frac{1} {2} \cdot \frac{2} {5}u^{2\frac{1} {2}}  + C  \cr   & \frac{1} {5}u^{2\frac{1} {2}}  + C  \cr   & \frac{1} {5}u^2 \sqrt u  + C  \cr   & \frac{1} {5}\left( {x^2  + 1} \right)^2 \sqrt {x^2  + 1}  + C \cr}


©2004-2025 WisFaq