Machten
|
Logaritmen
|
M1
a^{0}=1
|
L0
{}^a\log (b) + {}^a\log (c) = {}^a\log (b \cdot c)
{}^a\log (b) - {}^a\log (c) = {}^a\log (\frac{b}{c})
|
M2
a^{1}=a
|
L1
\begin{array}{l}
{}^a\log (b) = c \Rightarrow a^c = b \\
(a > 0 \wedge a \ne 1 \wedge b > 0) \\
\end{array}
|
M3
a^{p}\cdot a^{q}=a^{p+q}
|
L2
\begin{array}{l}
{}^a\log \left( b \right) = \frac{{\log \left( b \right)}}{{\log \left( a \right)}} \\
(zie\,\,*) \\
\end{array}
|
M4
a^{p}:a^{q}=a^{p-q}
|
L3
^a \log \left( {b^p } \right) = p \cdot {}^a\log (b)
|
M5
(a^{p})^{q}=a^{p\cdot q}
|
L4
a^{{}^a\log (b)} = b
|
M6
(a\cdot b)^{p}=a^{p}\cdot b^{p}
|
*)
L2 uitgebreid
\begin{array}{l}
{}^a\log \left( b \right) = \frac{{{}^g\log \left( b \right)}}{{{}^g\log \left( a \right)}} \\
(g > 0) \\
\end{array}
|
M7
a^{-p}=\frac{1}{a^{p}}
|

|
M8
a^{\frac{1}{2}}=\sqrt{a}
(a\ge 0)
|

|
M9
\eqalign{
& {a^{\frac{p}{q}}} = \root q \of {{a^p}} \cr
& (a \ge 0) \cr}
|
© 2016 WisFaq.nl
|