Uitwerkingen
A
\begin{array}{l} f(x) = (x^2 + 2)(2x - 1) \\ f'(x) = 2x(2x - 1) + (x^2 + 2) \cdot 2 \\ f'(x) = 4x^2 - 2x + 2x^2 + 4 \\ f'(x) = 6x^2 - 2x + 4 \\ \end{array}
B
\begin{array}{l} h(x) = \left( {2x + 2} \right)^6 \cdot \left( {10 - x} \right)^2 \\ h'(x) = 6\left( {2x + 2} \right)^5 \cdot 2 \cdot \left( {10 - x} \right)^2 + \left( {2x + 2} \right)^6 \cdot 2\left( {10 - x} \right) \cdot - 1 \\ h'(x) = 12\left( {2x + 2} \right)^5 \cdot \left( {10 - x} \right)^2 - 2\left( {2x + 2} \right)^6 \cdot \left( {10 - x} \right) \\ h'(x) = 2\left( {2x + 2} \right)^5 \left( {10 - x} \right)\left( {6\left( {10 - x} \right) - \left( {2x + 2} \right)} \right) \\ h'(x) = 2\left( {2x + 2} \right)^5 \left( {10 - x} \right)\left( {60 - 6x - 2x - 2} \right) \\ h'(x) = 2\left( {2x + 2} \right)^5 \left( {10 - x} \right)\left( {58 - 8x} \right) \\ h'(x) = 128\left( {x + 1} \right)^5 \left( {10 - x} \right)\left( {29 - 4x} \right) \\ \end{array}
C
\begin{array}{l} f(x) = \left( {3x^2 + 4x + 2} \right)^6 \\ f'(x) = 6\left( {3x^2 + 4x + 2} \right)^5 \cdot \left( {6x + 4} \right) \\ f'(x) = 12\left( {3x + 2} \right)\left( {3x^2 + 4x + 2} \right)^5 \\ \end{array}
D
\begin{array}{l} g(x) = (12 - x)^{32} \\ g'(x) = 32 \cdot (12 - x)^{31} \cdot - 1 \\ g'(x) = - 32 \cdot (12 - x)^{31} \\ g'(x) = 32(x - 12)^{31} \\ \end{array}
E
\begin{array}{l} g(x) = \left( {x^2 + 2x + 3} \right)\left( {x^2 - 4x + 8} \right) \\ g'(x) = \left( {2x + 2} \right)\left( {x^2 - 4x + 8} \right) + \left( {x^2 + 2x + 3} \right)\left( {2x - 4} \right) \\ g'(x) = 2x^3 - 8x^2 + 16x + 2x^2 - 8x + 16 + 2x^3 - 4x^2 + 4x^2 - 8x + 6x - 12 \\ g'(x) = 4x^3 - 6x^2 + 6x + 4 \\ \end{array}
F
\begin{array}{l} f(x) = - x(5 - x)^4 \\ f'(x) = - 1 \cdot (5 - x)^4 + - x \cdot 4(5 - x)^3 \cdot - 1 \\ f'(x) = \left( {5 - x} \right)^3 \left( { - (5 - x) + 4x} \right) \\ f'(x) = \left( {5 - x} \right)^3 \left( {5x - 5} \right) \\ f'(x) = 5(x - 1)\left( {5 - x} \right)^3 \\ \end{array}

©2004-2025 WisFaq